English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Immunopharmacology 2020-Mar

Cryptochlorogenic acid attenuates LPS-induced inflammatory response and oxidative stress via upregulation of the Nrf2/HO-1 signaling pathway in RAW 264.7 macrophages.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Xue-Lian Zhao
Liang Yu
Sun-Dong Zhang
Kou Ping
Hai-Yan Ni
Xiang-Yu Qin
Chun-Jian Zhao
Wei Wang
Thomas Efferth
Yu-Jie Fu

Keywords

Abstract

Phenolic acids are found in natural plants, such as caffeic acid, rosmarinic acid, and chlorogenic acid. They have long been used as pharmacological actives, owing to their anti-inflammatory and antioxidant activities. Cryptochlorogenic acid (CCGA) is a special isomer of chlorogenic acid; the pharmacological effects and related molecular mechanisms of CCGA have been poorly reported. In the present study, the antioxidant and anti-inflammatory effects of CCGA in RAW 264.7 macrophages and the underlying mechanisms were investigated. The results revealed that CCGA dose-dependently inhibited LPS-induced production of NO, TNF-α, and IL-6 and blocked iNOS, COX-2, TNF-α, and IL-6 expressions. CCGA also significantly increased the GSH/GSSG ratio and SOD activity and reduced the MDA level. Moreover, CCGA suppressed the nuclear translocation of NF-κB by hindering the phosphorylation of IκB kinase (IKK) and degrading IκB. It also downregulated the phosphorylation of MAPKs. Our results indicated that CCGA significantly inhibited NF-κB activation by controlling the expression of pro-inflammatory factors and promoting the nuclear transfer of Nrf2. In conclusion, CCGA could attenuate LPS-induced inflammatory symptoms by modulating NF-κB/MAPK signaling cascades and inhibit LPS-induced oxidative stress via Nrf2 nuclear translocation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge