English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytomedicine 2020-Aug

Curcumin inhibits proteasome activity in triple-negative breast cancer cells through regulating p300/miR-142-3p/PSMB5 axis

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Le Liu
Yalin Fu
Yuyang Zheng
Mingke
Changhua Wang

Keywords

Abstract

Background: Curcumin functions as a proteasome inhibitor. However, the molecular mechanisms behind this action need more detailed explanations.

Purpose: This study aimed to investigate the inhibitory effect of curcumin on 20S proteasome activity and to elucidate its exact mechanism in triple-negative breast cancer (TNBC) MDA-MB-231 cells.

Methods: Proteasomal peptidase activities were assayed using synthetic fluorogenic peptide substrates. Knockdown or overexpression of microRNA (miRNA or miR) or protein was used to investigate its functional effect on downstream cellular processes. BrdU (5‑bromo‑2'-deoxyuridine) assay was performed to identify cell proliferation. Western blot and quantitative real-time PCR(qRT-PCR) were carried out to determine protein abundance and miRNA expression, respectively. Correlations between protein expressions, miRNA levels, and proteasome activities were analyzed in TNBC tissues. Xenograft tumor model was performed to observe the in vivo effect of curcumin on 20S proteasome activity.

Results: Curcumin significantly reduced PSMB5 protein levels, accompanied with a reduction in the chymotrypsin-like (CT-l) activity of proteasome 20S core. Loss of PSMB5 markedly inhibited the CT-l activity of 20S proteasome. Furthermore, curcumin treatment significantly elevated miR-142-3p expression. PSMB5 was a direct target of miR-142-3p and its protein levels were negatively regulated by miR-142-3p. Moreover, histone acetyltransferase p300 suppressed miR-142-3p expression. Overexpression of p300 mitigated the promotive effect of curcumin on miR-142-3p expression. The correlations among p300 abundances, miR-142-3p levels, PSMB5 expressions, and the CT-l activities of 20S proteasome were evidenced in TNBC tissues. In addition, loss of p300 and PSMB5 reduced cell proliferation. Inhibition of miR-142-3p significantly attenuated the inhibitory impact of curcumin on cell proliferation. These curcumin-induced changes on p300, miR-142-3p, PSMB5, and 20S proteasome activity were further confirmed in in vivo solid tumor model.

Conclusion: These findings demonstrated that curcumin suppressed p300/miR-142-3p/PSMB5 axis leading to the inhibition of the CT-l activity of 20S proteasome. These results provide a novel and alternative explanation for the inhibitory effect of curcumin on proteasome activity and also raised potential therapeutic targets for TNBC treatment.

Keywords: Breast cancer cells; Curcumin; MiR-142–3p; P300; PSMB5; Proteasome.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge