English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Molecular Biology 2020-Apr

Cyanidin based anthocyanin biosynthesis in orange carrot is restored by expression of AmRosea1 and AmDelila, MYB and bHLH transcription factors.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Shrikant Sharma
Inger Holme
Giuseppe Dionisio
Miyako Kodama
Tsaneta Dzhanfezova
Bjarne Joernsgaard
Henrik Brinch-Pedersen

Keywords

Abstract

The simultaneous expression of AmRosea1 and AmDelila transcription factors from snapdragon can activate the anthocyanin pathway in orange carrots, leading to the synthesis and accumulation of anthocyanins in the taproots. Anthocyanins are phenolic compounds produced in various parts of plants. They are used as natural food dyes and are reported as beneficial antioxidants for humans. Black carrot is an important source for anthocyanins; however, the reason for the lack of anthocyanin production in the orange carrot is unknown. Anthocyanins are synthesized by a specific branch of the phenylpropanoid pathway that has previously been reported to be activated by a triad of R2R3-MYB, basic helix-loop helix (bHLH) and WD40 transcription factors (TFs). In the current study, orange carrots were turned purple by simultaneous expression of R2R3-MYB and bHLH TFs, i.e. AmRosea1 and AmDelila from snapdragon (Antirrhinum majus). Simultaneous transgenic expression of the TFs under a constitutive promoter in the orange carrot cultivar 'Danvers 126' lead to consistent upregulation of anthocyanin-related biosynthetic genes and significant accumulation of anthocyanins in leaves, stems and taproots. Highest overall content of soluble anthocyanins in the taproot among the transformants amounted to 44.38 mg g-1 dry weight. The anthocyanin profile of the transformants were significantly different from the profile in the reference black carrot 'Deep Purple'. The main anthocyanins present in the transformed taproots were cyanidin 3-xylosyl(sinapoylglucosyl)galactoside, whereas the main anthocyanin present in Deep Purple was cyanidin 3-xylosyl(feruloylglucosyl)galactoside. This study confirms the presence of the necessary biosynthetic genes in orange carrots for production of anthocyanins and demonstrates the absence of suitable R2R3-MYB and bHLH TFs for stimulating anthocyanin biosynthesis in the orange carrot.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge