English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Pharmacology 2020-Apr

Cytosolic and mitochondrial ROS production resulted in apoptosis induction in breast cancer cells treated with Crocin: The role of FOXO3a, PTEN and AKT signaling.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ahmad Nasimian
Parvaneh Farzaneh
Fuyuhiko Tamanoi
S Bathaie

Keywords

Abstract

Different groups have reported the Crocin anticancer activity. We previously showed Crocin-induced apoptosis in rat model of breast and gastric cancers, through the increased Bax/Bcl-2 ratio and caspases activity, as well as the cell cycle arrest in a p53-dependent manner. Since Crocin antioxidant activity has been shown under different conditions, it is interesting to elucidate its apoptotic mechanism. Here, we treated two breast cancer cell lines, MCF-7 and MDA-MB-231, with Crocin. MTT and ROS assays, cell cycle arrest, Bax/Bcl-2 ratio and caspase3 activity were determined. PARP cleavage and expression of some proteins were studied using Western blotting and immunofluorescence. The results indicated stepwise ROS generation in cytosol and mitochondria after Crocin treatment. Attenuating the early ROS level, using diphenyleneiodonium, diminished the sequent mitochondrial damage (decreasing Δψ) and downstream apoptotic signaling. Crocin induced ROS production, FOXO3a expression and nuclear translocation, and then, elevation of the expression of FOXO3a target genes (Bim and PTEN) and caspase-3 activation. Application of N-acetylcysteine blocked AKT/FOXO3a/Bim signaling. FOXO3a knockdown resulted in a decrease of Bim, PTEN and caspase 3, after Crocin treatment. PTEN knockdown caused a decrease in FOXO3a, Bim and caspase 3, in addition to an increase in p-AKT and p-FOXO3a, after Crocin treatment. In conclusion, Crocin induced apoptosis in MCF-7 and MDA-MB-231 human breast cancer cells. The ROS-activated FOXO3a cascade plays a central role in this process. FOXO3a-mediated upregulation of PTEN exerted a further inhibition of the AKT survival pathway. These data provide a new insight into applications of Crocin for cancer therapy.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge