English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC complementary medicine and therapies 2020-Jan

Cytotoxycity and antiplasmodial activity of phenolic derivatives from Albizia zygia (DC.) J.F. Macbr. (Mimosaceae).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Romeol Koagne
Frederick Annang
Bastien Cautain
Jesús Martín
Guiomar Pérez-Moreno
Gabin Bitchagno
Dolores González-Pacanowska
Francisca Vicente
Ingrid Simo
Fernando Reyes

Keywords

Abstract

The proliferation and resistance of microorganisms area serious threat against humankind and the search for new therapeutics is needed. The present report describes the antiplasmodial and anticancer activities of samples isolated from the methanol extract of Albizia zygia (Mimosaseae).

MATERIAL
The plant extract was prepared by maceration in methanol. Standard chromatographic, HPLC and spectroscopic methods were used to isolate and identify six compounds (1-6). The acetylated derivatives (7-10) were prepared by modifying 2-O-β-D-glucopyranosyl-4-hydroxyphenylacetic acid and quercetin 3-O-α-L-rhamnopyranoside, previously isolated from A. zygia (Mimosaceae). A two-fold serial micro-dilution method was used to determine the IC50s against five tumor cell lines and Plasmodium falciparum.

RESULTS
In general, compounds showed moderate activity against the human pancreatic carcinoma cell line MiaPaca-2 (10 < IC50 < 20 μM) and weak activity against other tumor cell lines such as lung (A-549), hepatocarcinoma (HepG2) and human breast adenocarcinoma (MCF-7and A2058) (IC50 > 20 μM). Additionally, the two semi-synthetic derivatives of quercetin 3-O-α-L-rhamnopyranoside exhibited significant activity against P. falciparum with IC50 of 7.47 ± 0.25 μM for compound 9 and 6.77 ± 0.25 μM for compound 10, higher than that of their natural precursor (IC50 25.1 ± 0.25 μM).

The results of this study clearly suggest that, the appropriate introduction of acetyl groups into some flavonoids could lead to more useful derivatives for the development of an antiplasmodial agent.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge