English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Materials Science and Engineering C 2020-May

Design and evaluation of a biosynthesized cellulose drug releasing duraplasty.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Taisa Stumpf
Ryan Sandarage
Ahmad Galuta
Patrick Fournier
Tongda Li
Kathlyn Kirkwood
Xinan Yi
Eve Tsai
Xudong Cao

Keywords

Abstract

Decompressive craniectomy (DC) is a standard surgical procedure performed on stroke patients in which a portion of a skull is removed and a duraplasty membrane is applied onto the brain. While DC can significantly reduce the risk of death, it does not reverse the stroke damage. In this study, a novel biosynthesized cellulose (BC)-based drug releasing duraplasty was developed and studied. The BC duraplasty fabrication process allowed readily incorporation of growth factors (GFs) in a sterile manner and control of physical and mechanical properties of the resulting duraplasty. Our results showed that BC duraplasty containing the highest amount of dry cellulose presented swelling ratio of 496 ± 27%, Young's modulus of 0.37 ± 0.02 MPa, ultimate tensile strength of 0.96 ± 0.02 MPa, while releasing GFs for over 10 days. In addition, neural stem/progenitor cell (NSPC) cultures demonstrated that the GFs released from the BC duraplasty promoted NSPC proliferation and differentiation in vitro. Finally, animal studies revealed that the BC duraplasty did not cause any inflammatory reactions after the DC procedure in vivo. In summary, this newly developed GF loaded BC membrane demonstrates a promising potential as drug releasing duraplasty, not only for stroke treatments but also for traumatic brain injuries and spinal cord injuries.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge