English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Medicinal Chemistry 2020-Mar

Design, preparation and evaluation of different branched biotin modified liposomes for targeting breast cancer.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Baolan Tang
Yao Peng
Qiming Yue
Yanchi Pu
Ru Li
Yi Zhao
Li Hai
Li Guo
Yong Wu

Keywords

Abstract

A series of liposome ligands (Bio-Chol, Bio-Bio-Chol, tri-Bio-Chol and tetra-Bio-Chol) modified by different branched biotins that can recognize the SMVT receptors over-expressed in breast cancer cells were synthesized. And four liposomes (Bio-Lip, Bio-Bio-Lip, tri-Bio-Lip and tetra-Bio-Lip) modified by above mentioned ligands as well as the unmodified liposome (Lip) were prepared to study the targeting ability for breast cancer. The cytotoxicity study and apoptosis assay of paclitaxel-loaded liposomes showed that tri-Bio-Lip had the strongest anti-proliferative effect on breast cancer cells. The cellular uptake studies on mice breast cancer cells (4T1) and human breast cancer cells (MCF-7) indicated tri-Bio-Lip possessed the strongest internalization ability, which was 5.21 times of Lip, 2.60 times of Bio-Lip, 1.67 times of Bio-Bio-Lip and 1.17 times of tetra-Bio-Lip, respectively. Moreover, the 4T1 tumor-bearing BALB/c mice were used to evaluate the in vivo targeting ability. The data showed the enrichment of liposomes at tumor sites were tri-Bio-Lip > tetra-Bio-Lip > Bio-Bio-Lip > Bio-Lip > Lip, which were consistent with the results of in vitro targeting studies. In conclusion, increasing the density of targeting molecules on the surface of liposomes can effectively enhance the breast cancer targeting ability, and the branching structure and spatial distance of biotin residues may also have an important influence on the affinity to SMVT receptors. Therefore, tri-Bio-Lip could be a promising drug delivery system for targeting breast cancer.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge