English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Annals of the New York Academy of Sciences 2020-Jan

Development of mouse models for the study of chloropicrin and hydrogen fluoride ocular injury.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Robert Causey
Jeffrey Koenig
Jeffrey Autrey
Kevin McGowan
Amber Gomez
John Lehman
Albert Ruff

Keywords

Abstract

The possibility of chemical terrorism within the United States is a rising concern, with the eye being one of the most sensitive tissues to toxicant exposure. We sought to develop mouse models of toxicant-induced ocular injury for the purpose of evaluating potential therapeutics. Chloropicrin (CP) and hydrogen fluoride (HF) were selected for the study owing to their reportedly high potential to induce ocular injury. Eyes of female BALB/c mice were exposed to CP or HF vapor in order to produce a moderate injury, as defined by acute corneal epithelial loss followed by progressive corneal pathology with the absence of injury to deeper eye structures. Clinical injury progression was evaluated up to 12 weeks postexposure, where a significant dose-dependent induction of corneal neovascularization was measured. Histopathology noted epithelial necrosis and stromal edema as early as 24 h after exposure but was resolved by 12 weeks. A significant increase in inflammatory cytokine concentrations was measured in the cornea 24 h after exposure and returned to baseline by day 14. The ocular injury models we developed here for CP and HF exposure should serve as a valuable tool for the future evaluation of novel therapeutics and the molecular mechanisms of injury.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge