English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Molecular Biology 2020-Sep

Direct formation of the sesquiterpeonid ether liguloxide by a terpene synthase in Senecio scandens

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Liping Wang
Jin Liang
Xin Xie
Jiang Liu
Qinqin Shen
Lixia Li
Qiang Wang

Keywords

Abstract

SsLOS directly catalyzed formation of the sesquiterpenoid ether liguloxide in the medicinal plant Senecio scandens. Terpene synthases determine the diversity of terpene skeletons and corresponding terpenoid natural products. Oxygenated groups introduced in catalysis of terpene synthases are important for solubility, potential bioactivity and further elaboration of terpenoids. Here we identified one terpene synthase, SsLOS, in the Chinese medicinal plant Senecio scandens. SsLOS acted as the sesquiterpene synthase and utilized (E,E)-farnesyl diphosphate as the substrate to produce a blend of sesquiterpenoids. GC-MS analysis and NMR structure identification demonstrated that SsLOS directly produced the sesquiterpenoid ether, liguloxide, as well as its alcoholic isomer, 6-epi-guaia-2(3)-en-11-ol. Homology modeling and site-directed mutagenesis were combined to explore the catalytic mechanism of SsLOS. A few key residues were identified in the active site and hedycaryol was identified as the neutral intermediate of SsLOS catalysis. The plausible catalytic mechanism was proposed as well. Altogether, SsLOS was identified and characterized as the sesquiterpenoid ether synthase, which is the second terpenoid ether synthase after 1,8-cineol synthase, suggesting some insights for the universal mechanism of terpene synthases using the water molecule in the catalytic cavity.

Keywords: Liguloxide; Medicinal plant; Sesquiternoid; Terpene synthase; Water.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge