English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Phytoremediation 2020-Feb

Effect of copper-resistant Stenotrophomonas maltophilia on maize (Zea mays) growth, physiological properties, and copper accumulation: potential for phytoremediation into biofortification.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Kachhadiya Gopi
Hardik Jinal
Patel Prittesh
Vinodbhai Kartik
Natarajan Amaresan

Keywords

Abstract

In this study, Cu-tolerant PGP bacteria were isolated from the contaminated soils of Tapi (Surat, Gujarat, India). From a set of 118 bacteria isolated from the contaminated soil, the isolate RBTS7 was found to be efficient in tolerating 0.3 g (w/v) Cu. The isolate was identified as Stenotrophomonas maltophilia, based on biochemical and 16S rRNA gene sequencing. Further, the isolate was also found to produce indole acetic acid (140 µg/ml) and siderophore, and solubilize potassium. Inoculation study was carried out in the presence and absence of Cu in the greenhouse. The results revealed that S. maltophilia enhanced plant growth and biomasses compared to control. In addition to plant growth attributes, the isolate also enhanced chlorophyll a and b (434.1 and 496.7%) contents and antioxidant properties such as proline (168.2%), total phenolic compounds (33.5%), and ascorbic acid oxidase (62.3%) compared to control with Cu and without Cu. Inoculation of S. maltophilia + Cu enhanced the uptake of Cu in maize root (77.4%) and stem (112.0%) compared to Cu-stressed control. The results clearly indicated the inoculation of S. maltophilia reduced the toxicity of Cu and in turn enhanced the plant growth and mobilization of Cu to the plant parts.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge