English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2020-Feb

Effect of three Napier grass varieties on phytoextraction of Cd- and Zn-contaminated cultivated soil under mowing and their safe utilization.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Wen-Jun Yang
Jiao-Feng Gu
Hang Zhou
Fang Huang
Teng-Yue Yuan
Jing-Yi Zhang
Shi-Long Wang
Zhi-Guang Sun
Hong-Wei Yi
Bo-Han Liao

Keywords

Abstract

The use of Napier grass to remediate heavy metal-contaminated soil is a new phytoremediation technique. The objective of this study was to evaluate the ability of Napier grass (Pennisetum purpureum Schumach.) to remediate Cd- and Zn-contaminated cultivated soil under nonmowing and mowing and the possibility of safe utilization of the stem and leaf after detoxification by liquid extraction. Three Napier grass varieties, P. purpureum cv. Mott (PM), P. purpureum cv. Red (PR), and P. purpureum cv. Guiminyin (PG), were planted in a field with 3.74 mg kg-1 Cd and 321.26 mg kg-1 Zn for 180 days. The maximum amounts of Cd and Zn removed by PG were 197.5 and 5023.9 g ha-1, respectively, almost equaling those of hyperaccumulators. Compared with nonmowing, mowing did not decrease the Cd and Zn contents in various tissues but increased the biomasses of PM, PR, and PG by 86.6%, 18.9%, and 26.1%, respectively. Compared with nonmowing, the amounts of Cd removed by PM, PR, and PG under mowing increased by 110.5%, 40.0%, and 107.9%, respectively, and that of Zn increased by 63.0%, 53.1%, and 71.6%. The dominant Cd and Zn chemical fractions in Napier grass were the pectate- and protein-integrated fractions. After liquid extraction, although the nutrient element (Ca, K, Mg, and Mn) contents in the stem and leaf were reduced significantly, the Cd and Zn contents decreased below the limit of the Chinese Hygienic Standard for Feeds, and the crude protein content was largely retained. Such detoxified stems and leaves can be safely used as feeds or as raw materials for energy production.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge