English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2020-Jan

Effects of benthivorous fish disturbance and snail herbivory on water quality and two submersed macrophytes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jianfeng Chen
Haojie Su
Gaoan Zhou
Yaoyao Dai
Jin Hu
Yihao Zhao
Zugen Liu
Te Cao
Leyi Ni
Meng Zhang

Keywords

Abstract

Benthivorous fish disturbance and snail herbivory are two important factors that determine the community structure of submersed macrophytes. We conducted an outdoor mesocosm experiment to examine the separate and combined effects of these two factors on water quality and the growth of two mixed-cultivation submersed macrophytes, Vallisneria natans and Hydrilla verticillata, with different growth forms. The experiment involved two levels of fish (Misgurnus anguillicaudatus) disturbance crossed with two levels of snail (Radix swinhoei) intensity. The results revealed that fish activity rather than snail activity significantly increased the overlying water concentrations of total suspended solids (TSS), total nitrogen (TN), ammonia nitrogen (N-NH4), total phosphorus (TP) and phosphate phosphorus (P-PO4). However, no differences among treatments were observed for chlorophyll a (chl a) concentrations. Fish disturbance or snail herbivory alone did not affect the relative growth rate (RGR) of H. verticillata, but their combined effects significantly decreased the RGR of H. verticillata. Although snail herbivory alone did not affect the RGR of V. natans, fish disturbance alone and the combined effects of these factors drastically reduced its RGR. Both species exhibited increased free amino acid (FAA) contents and decreased ramet numbers, soluble carbohydrate (SC) contents and starch contents in the presence of the fish. Moreover, compared to H. verticillata, V. natans showed exceedingly low ramet numbers and starch contents in the presence of the fish. H. verticillata had a higher RGR and summed dominance ratio (SDR2) than V. natans in all treatments; H. verticillata also displayed a larger competitive advantage in the presence of fish disturbance. The present study suggests that (1) fish disturbance rather than snail activity increases water nutrient concentrations, (2) low snail density may be harmful to submersed macrophyte growth when the plants are under other abiotic stress conditions and (3) the competitive advantage of H. verticillata over V. natans is more preponderant in a turbid environment.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge