English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Materials Chemistry B 2020-Jun

Efficient enzyme-activated therapy based on the different locations of protein and prodrug in nanoMOFs

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Fan Wang
Jian Yang
Yongsheng Li
Qixin Zhuang
Jinlou Gu

Keywords

Abstract

Enzyme-activated prodrug therapy (EAPT) is an effective cancer treatment strategy able to transport non-toxic prodrugs and subsequently convert them into drugs at specific times and locations. However, due to the limitation of easy biodegradability and the membrane-impermeable characteristic of exogenous enzymes, there is a need to exploit suitable carriers for the effective protection and simultaneous delivery of activating enzymes into cancer cells. Herein, hierarchically porous MOFs were employed for the loading of enzyme and prodrug in a single nanocarrier thanks to their different cavity sizes. The simple loading process allows entrapping of horseradish peroxidase (HRP) and a monocarboxyl-containing indole-3-acetic acid (IAA) prodrug with high loading capacities in different spaces, which keeps the catalytic activity of the enzyme perfectly intact and avoids the premature activation of the prodrug. The encapsulated HRP and IAA exhibit sustained and synchronized release behaviors. Compared to the native HRP enzyme, the current MOF nanocarriers not only facilitate enzyme delivery into cellular lysosomes and subsequent endosomal escape, but also effectively release enzyme and prodrug in the intracellular environment within 48 h. Eventually, HRP and IAA loaded MOF nanocarriers cause significant cell death with a low IC50 of 4.2 mg L-1, while the IAA prodrug alone is non-toxic even at high concentrations. Thus, hierarchically porous MOFs might offer a promising platform for EAPT with a highly consistent spatiotemporal distribution of enzymes and prodrugs in target tissues.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge