English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chromatography A 2020-Apr

Enantiomeric separation of triacylglycerols containing fatty acids with a ring (cyclofatty acids).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Andrea Palyzová
Tomáš Řezanka

Keywords

Abstract

Triacylglycerols (TAGs) containing cyclofatty acids (cycloFAs) from two oilseeds of Sterculia foetida and Hydnocarpus wightiana were analysed using both reversed-phase (RP18) and chiral phase columns. TAGs were identified using high-resolution electrospray ionization mass spectrometry in the positive ion mode. Fifty-five molecular species of TAGs have been identified in sterculic oil, 27 of which contained at least one cyclopropenyl-FA (e.g., malvalic or sterculic acids). The structures of regioisomers and enantiomers were determined for five major TAGs with cyclopropenyl-FAs. One hundred thirty-six TAGs were identified in chaulmoogra oil, 71 of which contained at least one cyclopentenyl-FA (e.g., gorlic, chaulmoogric, and hydnocarpic acids, etc.). Furthermore, in three molecular species, regioisomers and enantiomers were identified using HPLC on a chiral phase column. Eight molecular species of TAGs were prepared through organic synthesis to facilitate the identification of enantiomers. Retention times of fatty acid-containing triacylglycerols with one ring and one double bond are very similar to triacylglycerols with a dienoic fatty acid, but elution times are shorter. For example, dimalvaloylpalmitate elutes earlier than dilinoleylpalmitate. The order of elution of TAGs on the chiral column differs. In TAGs with 2 degrees of unsaturation (ring and double bond, e.g. PStP-StPP-PPSt), the order of elution is symmetric-asymmetric-asymmetric TAGs. TAGs with 4 degrees of unsaturation (one ring and three double bonds or two rings and two double bonds) present a different pattern. When TAGs contain two rings and two double bonds, the order of elution TAGs is asymmetric-symmetric-asymmetric (StStP-StPSt-PStSt); when TAGs contain a ring and 3 double bonds, the elution order is symmetric-asymmetric-asymmetric TAGs (OStO-StOO-OOSt). In species with a higher degree of unsaturation (e.g., 5), the elution order of the TAGs is asymmetric-asymmetric-symmetric (e.g. CCO-OCC-COC).

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge