English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Antibiotics 2020-Sep

Endophytic Streptomyces laurentii Mediated Green Synthesis of Ag-NPs with Antibacterial and Anticancer Properties for Developing Functional Textile Fabric Properties

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ahmed Eid
Amr Fouda
Gniewko Niedbała
Saad Hassan
Salem Salem
Abdullah Abdo
Helal Hetta
Tharwat Shaheen

Keywords

Abstract

Improvement of the medical textile industry has received more attention recently, especially with widespread of microbial and viral infections. Medical textiles with new properties, such as bacterial pathogens self-cleaning, have been explored with nanotechnology. In this study, an endophytic actinomycetes strain of Streptomyces laurentii R-1 was isolated from the roots of the medicinal plant Achillea fragrantissima. This is used as a catalyst for the mediated biosynthesis of silver nanoparticles (Ag-NPs) for applications in the textile industry. The biosynthesized Ag-NPs were characterized using UV-vis spectroscopy, Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), and X-ray Diffraction (XRD), which confirmed the successful formation of crystalline, spherical metal nanoparticles. The biosynthesized Ag-NPs exhibited broad-spectrum antibacterial activity. Our data elucidated that the biosynthesized Ag-NPs had a highly cytotoxic effect against the cancerous caco-2 cell line. The selected safe dose of Ag-NPs for loading on cotton fabrics was 100 ppm, regarding their antibacterial activity and safe cytotoxic efficacy. Interestingly, scanning electron microscope connected with energy dispersive X-ray spectroscopy (SEM-EDX) of loaded cotton fabrics demonstrated the smooth distribution of Ag-NPs on treated fabrics. The obtained results highlighted the broad-spectrum activity of nano-finished fabrics against pathogenic bacteria, even after 5 and 10 washing cycles. This study contributes a suitable guide for the performance of green synthesized NPs for utilization in different biotechnological sectors.

Keywords: antibacterial; cotton fabrics; endophytic actinomycetes; green synthesis; silver nanoparticles.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge