English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2020-May

Environmental Safety and Mode of Action of a Novel Curcumin-Based Photolarvicide

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Francine Venturini
Larissa de Souza
Matheus Garbuio
Natalia Inada
Jaqueline de Souza
Cristina Kurachi
Kleber de Oliveira
Vanderlei Bagnato

Keywords

Abstract

Aedes aegypti is the vector of important diseases like dengue, zika, chikungunya, and yellow fever. Vector control is pivotal in combating the spread of these mosquito-borne illnesses. Photoactivable larvicide curcumin obtained from Curcuma longa Linnaeus has shown high potential for Ae. aegypti larvae control. However, the toxicity of this photosensitizer (PS) might jeopardize non-target aquatic organisms. The aim of this study was to evaluate the toxicity of this PS to Daphnia magna and Danio rerio, besides assessing its mode of action through larvae biochemical and histological studies. Three PS formulations were tested: PS in ethanol+DMSO, PS in sucrose, and PS in D-mannitol. The LC50 of PS in ethanol+DMSO to D. rerio was 5.9 mg L-1, while in D. magna the solvents were extremely toxic, and LC50 was not estimated. The PS formulations in sugars were not toxic to neither of the organisms. Reactive oxygen species (ROS) were generated in D. magna exposed to 50 mg L-1 of PS in D-mannitol, and D. rerio did not elicit this kind of response. D. magna feeding rates were not affected by the PS in D-mannitol. Concerning Ae. aegypti larvae, there were changes in reduced glutathione and protein levels, while catalase activity remained stable after exposure to PS in D-mannitol and sunlight. Histological changes were observed in larvae exposed to PS in sucrose and D-mannitol, most of them irreversible and deleterious. Our results show the feasibility of this photolarvicide use in Ae. aegypti larvae control and its safety to non-target organisms. These data are crucial to this original vector control approach implementation in public health policies.

Keywords: Aedes aegypti; Curcuma longa; Danio rerio; Daphnia magna; Ecotoxicity; Mode of action; Photolarvicidal; Vector control.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge