English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Insect Science 2020-Mar

Evaluation of the Metabolic Effects of Hydrogen Sulfide on the Development of Bombyx mori (Lepidoptera: Bombycidae), Using Liquid Chromatography-Mass Spectrometry-Based Metabolomics.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yu-Yao Cao
Li-Li Peng
Li Jiang
Kiran Thakur
Fei Hu
Shun-Ming Tang
Zhao-Jun Wei

Keywords

Abstract

Hydrogen sulfide (H2S) is a highly poisonous gas with an unpleasant smell of rotten eggs. Previous studies of H2S have primarily focused on its effects on mammalian nervous and respiratory systems. In this study, silkworm developmental parameters and changes in metabolites in response to H2S exposure were investigated using a hemolymph metabolomic approach, based on liquid chromatography-mass spectrometry (LC-MS). The developmental parameters, body weight, cocoon weight, cocoon shell weight, and cocoon shell ratio, were noticeably increased following H2S exposure, with the greatest effects observed at 7.5-μM H2S. Metabolites upregulated under H2S exposure (7.5 μM) were related to inflammation, and included (6Z, 9Z, 12Z)-octadecatrienoic acid, choline phosphate, and malic acid, while hexadecanoic acid was downregulated. Identified metabolites were involved in biological processes, including pyrimidine, purine, and fatty acid metabolism, which are likely to affect silk gland function. These results demonstrate that H2S is beneficial to silkworm development and alters metabolic pathways related to spinning function and inflammation. The present study provides new information regarding the potential functions of H2S in insects and metabolic pathways related to this phenomenon.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge