English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Plant Physiology 2020-May

Extracellular Ca 2+ induces desensitized cytosolic Ca 2+ rise sensitive to phospholipase C inhibitor which suppresses root growth with Ca 2+ dependence

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Man Zhao
Jianhua Chen
Huiqing Jin
Zhi Qi

Keywords

Abstract

Calcium (Ca) is an essential element for all organisms. In animal cells, the plasma membrane-localized Ca receptor CaSR coupled to a phospholipase C (PLC)-dependent signaling cascade monitors extracellular Ca2+ concentrations ([Ca2+]ext) and responds with increases in cytosolic calcium concentrations ([Ca2+]cyt). Plant roots encounter variable soil conditions, but how they sense changes in [Ca2+]ext is largely unknown. In this study, we demonstrate that increasing [Ca2+]ext evokes a transient increase in [Ca2+] in the cytosol, mitochondria, and nuclei of Arabidopsis thaliana root cells. These increases were strongly desensitized to repeat applications of [Ca2+]ext, a typical feature of receptor-mediated cellular signaling in animal and plant cells. Treatment with gadolinium (Gd3+), a CaSR activator in animal cells, induced concentration-dependent increases in [Ca2+]cyt in roots, which showed self-desensitization and cross-desensitization to [Ca2+]ext-induced increases in [Ca2+]cyt (EICC). EICC was sensitive to extracellular H+, K+, Na+, and Mg2+ levels. Treatment with the PLC inhibitor neomycin suppressed EICC and Ca accumulation in roots. The inhibitory effect of neomycin on root elongation was fully rescued by increasing [Ca2+]ext but not [Mg2+] or [K+] in the growth medium. These results suggest that [Ca2+]ext and the movement of Ca2+ into the cytosol of plant roots are regulated by a receptor-mediated signaling pathway involving PLC.

Keywords: Aequorin; Arabidopsis; Calcium; Phospholipase C; Receptor.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge