English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Pharmacology 2020-Apr

Fentanyl-induced block of hERG channels is exacerbated by hypoxia, hypokalemia, alkalosis, and the presence of hERG1b.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jared Tschirhart
Shetuan Zhang

Keywords

Abstract

Human ether-a-go-go-related gene (hERG) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel (IKr) important for repolarization of cardiac action potentials. Drug-induced disruption of hERG channel function is a main cause of acquired long QT syndrome (LQTS), which can lead to ventricular arrhythmias and sudden death. Illicit fentanyl use is associated with sudden death. We have demonstrated that fentanyl blocks hERG current (IhERG) at concentrations that overlap with the upper range of postmortem blood concentrations in fentanyl-related deaths. Since fentanyl can cause respiratory depression and electrolyte imbalances, in the present study, we investigated whether certain pathological circumstances exacerbate fentanyl-induced block of IhERG Our results showed that chronic hypoxia or hypokalemia additively reduced IhERG with fentanyl. As well, high pH potentiated the fentanyl-mediated block of hERG channels, with an IC50 at pH 8.4 being 7-fold lower than that at pH 7.4. Furthermore, while the full-length hERG variant, hERG1a, has been widely used to study hERG channels, coexpression with the short variant, hERG1b (which does not produce current when expressed alone), produces functional hERG1a/1b channels, which gate more closely resembling native IKr Our results showed that fentanyl blocked hERG1a/1b channels with a 3-fold greater potency than hERG1a channels. Thus, in addition to a greater susceptibility due to the presence of hERG1b in the human heart, hERG channel block by fentanyl can be exacerbated by certain conditions such as hypoxia, hypokalemia, or alkalosis, which may increase the risk of fentanyl-induced ventricular arrhythmias and sudden death. SIGNIFICANCE STATEMENT: This work demonstrates that heterologously expressed hERG1a/1b channels, which more closely resemble IKr in the human heart, are blocked by fentanyl with a 3-fold greater potency than the previously studied hERG1a expressed alone. Additionally, chronic hypoxia, hypokalemia, and alkalosis can increase the block of hERG current by fentanyl, potentially increasing the risk of cardiac arrhythmias and sudden death.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge