English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Gene 2020-Jul

Functional Characterization of Cinnamate 4-hydroxylase from Helianthus annuus Linn Using a Fusion Protein Method

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ziwen Wang
Xiangyun Jian
Yucheng Zhao
Shan Li
Ziwei Sui
Li Li
Lingyi Kong
Jun Luo

Keywords

Abstract

Sunflower (Helianthus annuus L.) is an important oil crop, the secondary metabolites of it include many compounds such as flavonoids and lignin. However, the research on the biosynthesis of phenolic compounds in sunflowers is still scarce. Cinnamate 4-hydroxylase (C4H) belongs to the cytochrome P450-dependent monooxygenase family and is involved in the synthesis of many phenolic compounds, but C4H in sunflowers has not yet been cloned and functionally characterized. In this study, we screened three C4H genes from the sunflower transcriptome and genomic databases, named HaC4H1, HaC4H2, and, HaC4H3, respectively. In heterologous expression experiments, we had improved a method from previous studies by the addition of restriction sites to make it easier to express multiple C4H functions and suitable for in vitro activity verification. HaC4Hs without the N-terminal membrane anchor region was fused with a redox partner of Arabidopsis thaliana cytochrome P450 enzyme (CYP450) by the method and functionally expressed in E. coli and the results showed that these three enzymes catalyzed the formation of p-coumaric acid. To further investigate whether our fusion protein approach is applicable to other C4Hs, we used this method to explore the functions of C4H from Peucedanum praeruptorum and Angelica decursiva, and they can also convert trans-cinnamic acid to p-coumaric acid. The gene expression profile showed that all three HaC4H genes showed the highest transcription levels in the roots and might be up-regulated by MeJA. In summary, these results reveal the function of HaC4Hs in sunflower and provide a simpler way to explore C4H and even other cytochrome P450 enzymes in prokaryotic expression systems.

Keywords: Cytochrome P450 enzyme; Phenylpropanoid pathway; Polyphenol compounds; Protein expression method.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge