English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2020-Apr

Genome-wide analysis of glycerol-3-phosphate O-acyltransferase gene family and functional characterization of two cutin group GPATs in Brassica napus.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jingxue Wang
Sanjay Singh
Siyu Geng
Shanshan Zhang
Ling Yuan

Keywords

Abstract

Genome-wide identification, spatio-temporal expression analysis and functional characterization of selected Brassica napus GPATs highlight their roles in cuticular wax biosynthesis and defense against fungal pathogens. Glycerol-3-phosphate 1-O-acyltransferase (GPAT) is a key enzyme in the biosynthesis of glycerolipids, a major component of cellular membranes and extracellular protective layers, such as cuticles in plants. Brassica napus is an economically important crop and cultivated worldwide mostly for its edible oil. The B. napus GPATs (BnGPATs) are insufficiently characterized. Here, we performed genome-wide analysis to identify putative GPATs in B. napus and its diploid progenitors B. rapa and B oleracea. The 32 B. napus BnGPATs are phylogenetically divided into three major groups, cutin, suberin, and diverse ancient groups. Analysis of transcriptomes of different tissues and seeds at different developmental stages revealed the spatial and temporal expression profiles of BnGPATs. The yield and oil quality of B. napus are adversely affected by the necrotrophic fungus, Sclerotinia sclerotiorum. We showed that several BnGPATs, including cutin-related BnGPAT19 and 21, were upregulated in the S. sclerotiorum resistant line. RNAi-mediated suppression of BnGPAT19 and 21 in B. napus resulted in thinner cuticle, leading to rapid water and chlorophyll loss in toluidine blue staining and leaf bleaching assays. In addition, the RNAi plants also developed severe necrotic lesions following fungal inoculation compared to the wild-type plants, indicating that BnGPAT19 and 21 are likely involved in cuticular wax biosynthesis that is critical for initial pathogen defense. Taken together, we provided a comprehensive account of GPATs B. napus and characterized BnGPAT19 and 21 for their potential roles in cuticular wax biosynthesis and defense against fungal pathogens.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge