English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Materials Chemistry B 2015-Dec

Good hydration and cell-biological performances of superparamagnetic calcium phosphate cement with concentration-dependent osteogenesis and angiogenesis induced by ferric iron.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J Zhang
H Shi
J Liu
T Yu
Z Shen
J Ye

Keywords

Abstract

The multifunctionality of calcium phosphate cement (CPC) can be achieved via co-doping with different metallic ions. Magnetism and hyperthermia have been proposed as potential therapeutic methods in bone healing and anti-osteosarcoma treatment. Iron-doping in biomaterials has been confirmed to meet the clinical requirements for these treatments. Herein, superparamagnetic iron-doped CPC (Fe-CPC) showed improved injectability and compressive strength, increased negative surface charge and accelerated hydration with increasing Fe3+ concentration. The superparamagnetism of Fe-CPC was confirmed through vibrating sample magnetometer (VSM) analysis. Mouse bone marrow stromal cells (mBMSCs) cultured on Fe-CPC disks exhibited better attachment morphology and proliferation, and had an enhancement of osteogenic-related gene expression. Moreover, a series of extracts with different concentrations of Fe3+ in cell culture medium were leaching-prepared to simulate the Fe3+-containing liquid environment around the magnetic biomaterials. The performances of mBMSCs and human umbilical vein endothelial cells (HUVECs) cultured in Fe3+-extracts showed increased proliferation rate in a certain amount of Fe3+. Osteogenesis and angiogenesis induced by Fe3+ were observed, but cytotoxicity in mBMSCs appeared when the concentration of Fe3+ was beyond a critical value. Fe-CPC is supposed to have prospective applications in bone remodeling through the combination of self-setting in situ, injectability, superparamagnetism, osteogenesis, angiogenesis, and osteoconductivity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge