English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biomolecules 2020-May

Green Synthesis of Gold and Silver Nanoparticles Using Leaf Extract of Clerodendrum inerme; Characterization, Antimicrobial, and Antioxidant Activities

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Shakeel Khan
Sammia Shahid
Chun-Sing Lee

Keywords

Abstract

Due to their versatile applications, gold (Au) and silver (Ag) nanoparticles (NPs) have been synthesized by many approaches, including green processes using plant extracts for reducing metal ions. In this work, we propose to use plant extract with active biomedical components for NPs synthesis, aiming to obtain NPs inheriting the biomedical functions of the plants. By using leaves extract of Clerodendrum inerme (C. inerme) as both a reducing agent and a capping agent, we have synthesized gold (CI-Au) and silver (CI-Ag) NPs covered with biomedically active functional groups from C. inerme. The synthesized NPs were evaluated for different biological activities such as antibacterial and antimycotic against different pathogenic microbes (B. subtilis, S. aureus, Klebsiella, and E. coli) and (A. niger, T. harzianum, and A. flavus), respectively, using agar well diffusion assays. The antimicrobial propensity of NPs further assessed by reactive oxygen species (ROS) glutathione (GSH) and FTIR analysis. Biofilm inhibition activity was also carried out using colorimetric assays. The antioxidant and cytotoxic potential of CI-Au and CI-Ag NPs was determined using DPPH free radical scavenging and MTT assay, respectively. The CI-Au and CI-Ag NPs were demonstrated to have much better antioxidant in terms of %DPPH scavenging (75.85% ± 0.67% and 78.87% ± 0.19%), respectively. They exhibited excellent antibacterial, antimycotic, biofilm inhibition and cytotoxic performance against pathogenic microbes and MCF-7 cells compared to commercial Au and Ag NPs functionalized with dodecanethiol and PVP, respectively. The biocompatibility test further corroborated that CI-Ag and CI-Au NPs are more biocompatible at the concentration level of 1-50 µM. Hence, this work opens a new environmentally-friendly path for synthesizing nanomaterials inherited with enhanced and/or additional biomedical functionalities inherited from their herbal sources.

Keywords: C. inerme; antibacterial; antimycotic; antioxidant; gold; green synthesis; silver.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge