English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Heliyon 2020-Aug

Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Md Bhuiyan
Muhammed Miah
Shujit Paul
Tutun Aka
Otun Saha
Md Rahaman
Md Sharif
Ommay Habiba
Md Ashaduzzaman

Keywords

Abstract

Synthesis of iron oxide nanoparticles by the recently developed green approach is extremely promising because of its non-toxicity and environmentally friendly behavior. In this study, nano scaled iron oxide particles (α-Fe2O3) were synthesized from hexahydrate ferric chloride (FeCl3.6H2O) with the addition of papaya (Carica papaya) leaf extract under atmospheric conditions. The synthesis of iron oxide nanoparticles was confirmed by systematic characterization using FTIR, XRD, FESEM, EDX and TGA studies. The removal efficiency of remazol yellow RR dye with the synthesized iron oxide nanoparticles as a photocatalyst was determined along with emphasizing on the parameters of catalyst dosage, initial dye concentration and pH. Increasing the dose of iron oxide nanoparticles enhanced the decolorization of the dyes and a maximum 76.6% dye degradation was occurred at pH 2 after 6 h at a catalyst dose of 0.8 g/L. Unit removal capacity of the photocatalyst was found to be 340 mg/g at dye concentration of 70 ppm and at a catalyst dose of 0.4 g/L. The synthesized nanoparticles showed moderate antibacterial activity against Klebsiella spp., E.Coli , Pseudomonas spp., S.aureus bacterial strains. Although the cytotoxic effect of nanoparticles against Hela, BHK-21 and Vero cell line was found to be toxic at maximum doses but it can be considered for tumor cell damage because it showed excellent activity against the Hela and BHK-21 cell lines.

Keywords: Antibacterial activity; Carica papaya; Cytotoxicity; Iron oxide nanoparticles; Materials chemistry; Materials science; Nanotechnology; Photocatalytic activity; Remazol yellow RR.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge