English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Food and Chemical Toxicology 2019-Dec

Hepatic injury and inflammation alter ethanol metabolism and drinking behavior.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Tianyi Ren
Bryan Mackowiak
Yuhong Lin
Yanhang Gao
Junqi Niu
Bin Gao

Keywords

Abstract

While liver injury is commonly associated with excessive alcohol consumption, how liver injury affects alcohol metabolism and drinking preference remains unclear. To answer these questions, we measured the expression and activity of alcohol dehydrogenase 1 (ADH1) and acetaldehyde dehydrogenase 2 (ALDH2) enzymes, ethanol and acetaldehyde levels in vivo, and binge-like and preferential drinking behaviors with drinking in the dark and two-bottle choice in animal models with liver injury. Acute and chronic carbon tetrachloride (CCl4), and acute LPS-induced liver injury repressed hepatic ALDH2 activity and expression and consequently, blood and liver acetaldehyde concentrations were increased in these models. In addition, chronic CCl4 and acute LPS treatment inhibited hepatic ADH1 expression and activity, leading to increases in blood and liver ethanol concentrations. Consistent with the increase in acetaldehyde levels, alcohol drinking behaviors were reduced in mice with acute or chronic liver injury. Furthermore, oxidative stress induced by hydrogen peroxide attenuated ADH1 and ALDH2 activity post-transcriptionally, while proinflammatory cytokines led to transcriptional repression of ADH1 and ALDH2 in cultured hepatocytes, which correlated with the repression of transcription factor HNF4α. Collectively, our data suggest that alcohol metabolism is suppressed by inflammation and oxidative stress, which is correlated with decreased drinking behavior.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge