English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Functional Plant Biology 2002-Jul

Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Sjaan Bidwell
Ian Woodrow
George Batianoff
Jens Sommer-Knudsen

Keywords

Abstract

Throughout the world, over 400 species of plants are known to accumulate large quantities of metals in their shoots (`hyperaccumulators'), but of these, relatively few accumulate manganese (Mn). We have identified for the first time an Australian native hyperaccumulator of Mn, Austromyrtus bidwillii (Benth.) Burrett (Myrtaceae). Concentrations of Mn up to 19 200 µg g-1 were measured in dried leaves of this rainforest tree, and young bark was found to contain up to 26 500 µg g-1 Mn. Approximately 40% of the Mn in the leaves is readily extracted with water, suggesting that some of the Mn is associated with water-soluble compounds such as organic acids. Organic acids present in appreciable amounts in leaf extracts of A. bidwillii were identified and quantified by HPLC and gas chromatography-mass spectrometry. The following organic acids (in order of concentration) were present: succinic > malic ≥ malonic > oxalic >> citric acid. The concentration of total organic acids was on average 123 000 µg g-1 dry tissue, which amounted to approximately three times the molar equivalent of Mn and two times the molar equivalent of total cations (Mn, Mg and Ca), demonstrating that organic anions were in excess. The Mn remaining after water extraction ((61 ± 3.9%) could be extracted with 0.2M HCl, suggesting that a significant portion of the Mn is associated with the cell wall (perhaps replacing Ca) or is present as other insoluble compounds.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge