English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2020-Jan

Influence of eco-friendly phytotoxic metabolites from Lasiodiplodia pseudotheobromae C1136 on physiological, biochemical, and ultrastructural changes on tested weeds.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Charles Adetunji
Julius Oloke
Paomipem Phazang
Neera Sarin

Keywords

Abstract

In this study, the active metabolites from both the wild strain of Lasiodiplodia pseudotheobromae C1136 and three genetically enhanced strains of C1136 were obtained through random mutagenesis. The effect of the active metabolites from these strains was evaluated in relation to physiological, biochemical, and ultrastructural changes on the leaves of two weeds (Amaranthus hybridus and Echinochloa crus-galli). The phytotoxic metabolites secreted by the genetically enhanced strains showed a decrease in the pigments (chl a, chl b, and carotenoids), carbohydrate content, and the amino acid profile. On the other hand, an increase in total phenols of the tested leaves was observed when compared with the untreated leaves. The scanning electron microscopy showed the presence of damages, necrosis, degradation, and ultrastructural changes on the tested leaf tissues of the weeds. Also, increased lipid peroxidation and electrolyte leakage were also observed on the tested weeds treated with phytotoxic metabolites secreted by the genetically enhanced strains. We also showed that the phytotoxins from the strains of C1136 are biocompatible and that it improved soil CO2 evolution, organic carbon content, and enzymatic activity (acidic and alkaline phosphatase, dehydrogenases, cellulase, catalase). The study validates the severe pathological effects of phytotoxic metabolites from the strains of C1136 on the leaves of the weeds presented in this study. The mode of action of the phytotoxic metabolites produced from this bioherbicidal isolates will go a long way in preventing environmental hazards.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge