English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Immunopharmacology 2019-Dec

Inhibition of peptidyl arginine deiminase-4 protects against myocardial infarction induced cardiac dysfunction.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Mingjun Du
Wengang Yang
Sebastian Schmull
Jianmin Gu
Song Xue

Keywords

Abstract

Peptidyl arginine deiminase-4 (PAD4), a PAD enzyme family member, catalyzes the posttranslational conversion of arginine residues to citrulline in target proteins. Although PAD4 is believed to play a crucial role in various pathological conditions such as infectious diseases, autoimmune diseases, and ischemic conditions, the effect of PAD4 in myocardial infarction (MI)-induced cardiac injury remains to be examined. Here, we hypothesize that PAD4 contributes to cardiac ischemic injury by exacerbating the inflammatory response and promoting neutrophil extracellular trap (NET) formation after MI. Permanent left coronary artery ligation, a condition that mimics MI, was performed on male C57BL/6 mice. [(3S,4R)-3-amino-4-hydroxy-1-piperidinyl] [2-[1-(cyclopropylmethyl)-1H-indol-2-yl]-7-methoxy-1-methyl-1H-benzimidazol-5-yl]-methanone (GSK484), an inhibitor of PAD4, was delivered via intraperitoneal injection to inhibit PAD4 activity. Cardiac PAD4 expression, tissue injury scoring, neutrophil infiltration, cit-H3 expression, NET formation, inflammatory cytokine secretion, apoptosis, and cardiac function were analyzed. In the current study, we discovered the protective effect of PAD4 inhibition using the PAD4-specific inhibitor GSK484 in cardiomyocytes challenged by MI. GSK484-mediated PAD4 inhibition can moderately preserve ventricle histological structure and myocardium integrity after MI, thereby reducing the infarct size and decreasing myocardial enzyme levels in serum. PAD4 inhibition also effectively protects cardiomyocytes from MI-induced NET formation and inflammatory cytokine secretion, in turn alleviating cardiac ischemia-induced apoptosis of cardiomyocytes. Collectively, these findings demonstrate the efficacy of specific PAD4 inhibition in reducing MI-induced neutrophil infiltration, NET formation, inflammatory reaction, and cardiomyocyte apoptosis, thereby increasing overall cardiac function improvement. These results provide novel insights for the development of new strategies to treat cardiovascular dysfunction in MI patients.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge