English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Medical Entomology 2020-May

Insecticidal Activity of Commiphora erythraea Essential Oil and Its Emulsions Against Larvae of Three Mosquito Species

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ephantus Muturi
William Hay
Kenneth Doll
Jose Ramirez
Gordon Selling

Keywords

Abstract

The use of essential oils as ecofriendly tools for vector management is one of the mainstreams for biopesticide research. We evaluated the larvicidal properties of Commiphora erythraea (opoponax) essential oil and its fractions against Culex restuans Theobald, Culex pipiens L., and Aedes aegypti L. The use of bio-based amylose-N-1-hexadecylammonium chloride inclusion complex (Hex-Am) and amylose-sodium palmitate inclusion complex (Na-Palm) as emulsifiers for C. erythraea essential oil was also investigated. Bisabolene was the most abundant chemical constituent in the whole essential oil (33.9%), fraction 2 (62.5%), and fraction 4 (23.8%) while curzerene (32.6%) and α-santalene (30.1%) were the dominant chemical constituents in fractions 1 and 3, respectively. LC50 values for the whole essential oil were 19.05 ppm for Cx. restuans, 22.61 ppm for Cx. pipiens, and 29.83 ppm for Ae. aegypti and differed significantly. None of the four C. erythraea essential oil fractions were active against mosquito larvae. Two CYP450 genes (CYP6M11 and CYP6N12) and one GST gene (GST-2) were significantly upregulated in Ae. aegypti larvae exposed to C. erythraea essential oil suggesting their potential involvement in metabolic pathways for C. erythraea essential oil. Essential oil emulsions produced with Hex-Am were more toxic than the whole essential oil while those produced with Na-Palm had similar toxicity as the whole essential oil. These findings demonstrate that C. erythraea essential oil is a promising source of mosquito larvicide and that the use of Hex-Am as an emulsifier can enhance the insecticidal properties of C. erythraea essential oil.

Keywords: Commiphora erythraea; emulsions; essential oil; larvicidal activity; mosquitoes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge