English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Molecular Modeling 2020-Aug

Insight into natural inhibitors and bridging docking to dynamic simulation against sugar Isomerase (SIS) domain protein

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Faisal Ahmad
Zartasha Shabaz
Syed Azam

Keywords

Abstract

The pathogen Legionella longbeachae is a causative agent of legionellosis. The antibiotic resistance is the major problem of this modern world. Thus, selective pressure warrants the need for identification of newer drug target. In current study, subtractive proteomics approach screen out SIS (sugar isomerase) domain protein as an attractive receptor molecule for rational drug design. This protein is involved in lipopolysaccharide biosynthesis and catalyzes the isomerization of sedoheptulose 7-phosphate in D-glycero-D-manno-heptose 7-phosphate. Molecular docking revealed compound 1 (2-(6-(N,N-dimethyl sulfamoyl)pipridin-4-yl)pyrazin-2-yl)imidazol-3-ium-1-ide) as the potent inhibitor having GOLD fitness score of 69. The complex is affirmed by half-site effect via simulation analysis. Complex stability was investigated via several approaches that follows dynamic simulation and binding energies. Trajectory analysis revealed slight change in ring positioning of inhibitor inside the active pocket during 130 ns (nanosecond). Interestingly, it was affirmed via binding interactions' density distribution. Hence, radial distribution function (RDF) inferred that SER55 and SER83 are the major residues that take part in hydrogen bonding and complex stability. Furthermore, an indigenously developed method axial frequency distribution (AFD) has revealed that ligand moved closer to the active site with both the residues SER55 and SER83 binding to the ligand. The phenomena was observed via rotating motion with respect to receptor center cavity. Thus, inhibitor movement towards allosteric site was observed at the end of simulations. Finally, binding free energy calculations by MMPB/GBSA predicts high compound affinity for the complex. Hence, findings from the current study will aid in the novel drug discovery and future experimental studies. Graphical abstract.

Keywords: Lipopolysaccharide; Molecular docking; Molecular dynamics simulation; Radial distribution function; Subtractive proteomics.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge