English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2020-Sep

Integrated analysis on biochemical profiling and transcriptome revealed nitrogen-driven difference in accumulation of saponins in a medicinal plant Panax notoginseng

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jin-Yan Zhang
Zhu Cun
Hong-Min Wu
Jun-Wen Chen

Keywords

Abstract

The medicinal plant Panax notoginseng is considered a promising source of secondary metabolites due to its saponins. However, there are relatively few studies on the response of saponins to nitrogen (N) availability and the mechanisms underlying the N-driven regulation of saponins. Saponins content and saponins -related genes were analyzed in roots of P. notoginseng grown under low N (LN), moderate N (MN) and high N (HN). Saponins was obviously increased in LN individuals with a reduction in β-glucosidase activity. LN facilitated root architecture and N uptake rate. Compared with the LN individuals, 2872 and 1122 genes were incorporated into as differently expressed genes (DEGs) in the MN and HN individuals. Clustering and enrichment showed that DEGs related to "carbohydrate biosynthesis", "plant hormone signal transduction", "terpenoid backbone biosynthesis", "sesquiterpenoid and triterpenoid biosynthesis" were enriched. The up-regulation of some saponins-related genes and microelement transporters was found in LN plants. Whereas the expression of IPT3, AHK4 and GS2 in LN plants fell far short of that in HN ones. Anyways, LN-induced accumulation of C-based metabolites as saponins might derive from the interaction between N and phytohormones in processing of N acquisition, and HN-induced reduction of saponins might be result from an increase in the form of β-glucosidase activity and N-dependent cytokinins (CKs) biosynthesis.

Keywords: Biomass allocation; Nitrogen uptake; Panax notoginseng; Phytohormones; Saponins; Transcriptome.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge