English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS ONE 2020-Jul

Integration of molecular networking and fingerprint analysis for studying constituents in Microctis Folium

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yang Bai
Qiang Jia
Weiwei Su
Zenghao Yan
Wenhui Situ
Xiang He
Wei Peng
Hongliang Yao

Keywords

Abstract

Microctis Folium is the dried leaves of a plant (Microcos paniculata L.) used to improve the digestive system, alleviate diarrhoea, and relieve fever, but information regarding its chemical composition has rarely been reported. The traditional research approach of determining chemical composition has included isolating, purifying, and identifying compounds with high-cost and time-consuming processes. In this study, molecular networking (MN) and fingerprint analysis were integrated as a comprehensive approach to study the chemical composition of Microctis Folium by an ultra fast liquid chromatography-photo diode array detector-triple-time of flight-tandem mass spectrometry (UFLC-DAD-Triple TOF-MS/MS). Large numbers of mass spectrometric data were processed to identify constituents, and the identified compounds and their unknown analogues were comprehensively depicted as visualized figures comprising distinct families by MN. A validated fingerprint methodology was established to quantitatively determine compounds in Microctis Folium. Ultimately, 165 constituents were identified in Microctis Folium for the first time and the identified compounds and approximately five hundred unknown analogues were applied to create visualized figures by MN, indicating compound groups and their chemical structure analogues in Microctis Folium. The validated fingerprint methodology was indicated to be specific, repeatable, precise, and stable and was used to determine 15 batches of samples during three seasons in three districts. Furthermore, seasonal or geographic environmental influences on the chemical profile were estimated by principal coordinate analysis. The results can be used to control the quality of Microctis Folium, observe seasonal or geographic environmental influences on the chemical profiles, and provide a reference for further exploitation of potential active unknown analogues in the future.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge