English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Anatomical Record 2020-Aug

Isorhamnetin attenuates TNF-α-induced inflammation, proliferation, and migration in human bronchial epithelial cells via MAPK and NF-κB pathways

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Xiaojie Ren
Longyin Han
Yongxing Li
Huanyi Zhao
Ziyin Zhang
Yuerong Zhuang
Ming Zhong
Qiang Wang
Wuhua
Yong Wang

Keywords

Abstract

Isorhamnetin has distinct anti-inflammatory activity and inhibits cell proliferation and migration. These effects are also involved in the pathogenesis of asthma. However, the effect of isorhamnetin on bronchial epithelial cells in patients with asthma has not been examined. Cells of human bronchial epithelial cell line BEAS-2B were cultured with isorhamnetin and tumour necrosis factor (TNF)-α. The effects of isorhamnetin on BEAS-2B cell viability were assessed using CCK8 assay. The EdU (5-ethynyl-2'-deoxyuridine) cell proliferation assay was performed to assess cell proliferation. BEAS-2B cell migration was measured using Transwell and wound healing assays. Real-time PCR and enzyme-linked immunosorbent assay were conducted to measure the expression of pro-inflammatory cytokines. Protein expression levels were determined by western blotting. Immunofluorescence was used to detect nuclear translocation of nuclear factor kappa B (NF-κB). We found that isorhamnetin at 20 and 40 μM reduced the proliferation of BEAS-2B cells induced by TNF-α. Isorhamnetin significantly decreased the expression of interleukin (IL)-1β, IL-6, IL-8, and C-X-C motif chemokine ligand 10 in BEAS-2B cells induced by TNF-α. Additionally, 10 μM isorhamnetin effectively reduced cell migration induced by TNF-α. Treatment with isorhamnetin inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) and NF-κB pathways induced by TNF-α. In summary, isorhamnetin inhibited the inflammation, proliferation, and migration of BEAS-2B cells by regulating the MAPK and NF-κB signalling pathways and is a drug candidate for asthma. This article is protected by copyright. All rights reserved.

Keywords: Asthma; Inflammation; Isorhamnetin; MAPK; Nuclear factor-κB.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge