English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemico-Biological Interactions 2020-Feb

Lignin-derived low-molecular-weight oxidized lignophenol stimulates AMP-activated protein kinase and suppresses renal inflammation and interstitial fibrosis in high fat diet-fed mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Shin Sato
Toshio Norikura
Yuuka Mukai
Shin Yamaoka
Keigo Mikame

Keywords

Abstract

Excess weight and obesity increase the risk of developing major risk factors for chronic kidney disease. Lignin comprises 20%-30% of the global plant biomass; however, it is not well utilized because of its resistance to chemical and biological degradation. We investigated whether low-molecular-weight oxidized lignophenol (LOLP), a lignin derivative, could alter inflammation and fibrosis in the kidneys of a high-fat diet (HFD)-fed mice. Male mice were divided into three treatment groups: HFD; HFD +0.3% LOLP; and HFD +0.6% LOLP. The control mice (Cont) were fed a low-fat diet. Macrophage kinetics, the degree of fibrosis, the extent of phosphorylation of AMP-activated protein kinase (AMPK), and mRNA expression of proinflammatory mediators in the kidneys were examined. The number of macrophages, the percentage of fibrotic area, and the mRNA expression of proinflammatory markers, TNF-α and Ccl2, and a marker of fibrosis, TGF-β, were significantly higher in the kidneys of mice in the HFD group than those in the Cont group. Conversely, treatment with 0.6% LOLP for 8 weeks significantly suppressed the degree of macrophage infiltration, interstitial fibrotic area, and the increased mRNA expression of proinflammatory and fibrosis markers induced by HFD. In conclusion, LOLP suppressed macrophage infiltration and the increase in fibrotic area, and upregulated AMPK phosphorylation in the kidneys of HFD-fed mice; thus, it may ameliorate HFD-induced kidney injury.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge