English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2020-Jul

Lilac Tasselflower ( Emilia sonchifolia) is a New Host for Peanut Witches' Broom Phytoplasma, a 16SrII-V Subgroup Strain in Taiwan

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yuanyu Chien
Choon-Meng Tan
Yueh-Chen Kung
Ya-Chien Lee
Yi-Ching Chiu
Jun-Yi Yang

Keywords

Abstract

Lilac tasselflower (Emilia sonchifolia) is an annual herbaceous plant that belongs to the family of Asteraceae. Lilac tasselflower is widely distributed at mid-low altitude regions in Taiwan, and is commonly used as traditional herbal medicine for the treatment of inflammation, rheumatism, dysentery, and analgesic. In March 2020, disease symptoms such as shoot proliferation, phyllody, and witches' broom were observed on lilac tasselflower at the sansheng community park in Mailiao, Yunlin County, Taiwan. Totally, four lilac tasselflower plants were checked and half of them were symptomatic. At the same area, similar symptoms associated with peanut witches' broom (PnWB) disease were observed (Liu et al. 2015). Samples including one healthy and two symptomatic lilac tasselflower were collected for total DNA and protein extraction used for PCR and western blotting assays, respectively. First, two sets of phytoplasma universal primer pairs P1/P7 and R16F2n/R16R2 were used to perform nested PCR for detection of 16S ribosomal RNA (rRNA) gene (Lee et al. 1993). A specific signal of expected size (1.2 kb) for 16S rRNA was only detected in samples of lilac tasselflower exhibiting disease symptoms. The amplified DNA fragment using primer pairs P1/P7 was partially sequenced (accession no. MT420682) with P1 and a nested primer (5'-GGGTCTTTACTGACGCTGAGG-3'). The 1.4 kb nucleotide sequence shares 100% identity with that of GenBank accession NZ_AMWZ01000008 (complement [31109 to 32640]) of phytoplasma associated with PnWB disease (Chung et al. 2013). Further analysis by iPhyClassifier, the virtual RFLP pattern of MT420682 confirmed that the phytoplasma detected in symptomatic lilac tasselflower could be classified into the 16SrII-V subgroup. For western blotting, total protein of each sample was examined using the polyclonal antibody raised against Imp protein of purple coneflower witches' broom phytoplasma (Chien et al. 2020), which shares 100% identity with that (accession no. ADD59806) of PnWB phytoplasma. A specific signal of expected size (19 kDa) for Imp was detected in symptomatic lilac tasselflower, but not in healthy lilac tasselflower. Subsequent PCR, DNA sequencing and western blotting assays further confirmed that the gene encoding a SAP11-like protein detected in samples of lilac tasselflower exhibiting disease symptoms is identical to that (accession no. EMR14684) of PnWB phytoplasma. Our results indicated that lilac tasselflower, which is recognized as a common weed in Taiwan, may facilitate the spreading of phytoplasma disease by acting as an alternative natural host for PnWB phytoplasma.

Keywords: Lilac tasselflower; Peanut witches’ broom disease; Phytoplasma; SAP11.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge