English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Proceedings of the National Academy of Sciences of the United States of America 2012-Aug

microRNA-31/factor-inhibiting hypoxia-inducible factor 1 nexus regulates keratinocyte differentiation.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Han Peng
Nihal Kaplan
Robert B Hamanaka
Julia Katsnelson
Hanz Blatt
Wending Yang
Liangliang Hao
Paul J Bryar
Randall S Johnson
Spiro Getsios

Keywords

Abstract

Notch plays a critical role in the transition from proliferation to differentiation in the epidermis and corneal epithelium. Furthermore, aberrant Notch signaling is a feature of diseases like psoriasis, eczema, nonmelanoma skin cancer, and melanoma where differentiation and proliferation are impaired. Whereas much is known about the downstream events following Notch signaling, factors responsible for negatively regulating Notch receptor signaling after ligand activation are incompletely understood. Notch can undergo hydroxylation by factor-inhibiting hypoxia-inducible factor 1 (FIH-1); however, the biological significance of this phenomenon is unclear. Here we show that FIH-1 expression is up-regulated in diseased epidermis and corneal epithelium. Elevating FIH-1 levels in primary human epidermal keratinocytes (HEKs) and human corneal epithelial keratinocytes (HCEKs) impairs differentiation in submerged cultures and in a "three-dimensional" organotypic raft model of human epidermis, in part, via a coordinate decrease in Notch signaling. Knockdown of FIH-1 enhances keratinocyte differentiation. Loss of FIH-1 in vivo increased Notch activity in the limbal epithelium, resulting in a more differentiated phenotype. microRNA-31 (miR-31) is an endogenous negative regulator of FIH-1 expression that results in keratinocyte differentiation, mediated by Notch activation. Ectopically expressing miR-31 in an undifferentiated corneal epithelial cell line promotes differentiation and recapitulates a corneal epithelium in a three-dimensional raft culture model. Our results define a previously unknown mechanism for keratinocyte fate decisions where Notch signaling potential is, in part, controlled through a miR-31/FIH-1 nexus.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge