English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Experimental and Therapeutic Medicine 2020-Mar

MicroRNA-21 mediates the protective effects of salidroside against hypoxia/reoxygenation-induced myocardial oxidative stress and inflammatory response.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Bing Liu
Huali Wei
Ming Lan
Na Jia
Junmeng Liu
Meng Zhang

Keywords

Abstract

Myocardial ischemia-reperfusion (I/R) injury is the oxidative stress and inflammatory response that occurs when a tissue is reperfused following a prolonged period of ischemic injury. Growing evidence has demonstrated that microRNAs (miRs) are essential in the development of myocardial I/R injury. Salidroside, a phenylpropanoid glycoside isolated from a traditional Chinese medicinal plant, Rhodiola rosea, possesses multiple pharmacological functions and protects against myocardial I/R injury in vitro and in vivo. However, the role of miRs in the cardioprotective effects of salidroside against myocardial I/R injury has not been studied, to the best of our knowledge. In the present study, the role of miR21 in the underlying mechanism of salidroside-induced protection against oxidative stress and inflammatory injuries in hypoxia/reoxygenation (H/R)-treated H9c2 cardiomyocytes was determined. The cell viability was assessed with an MTT assay. Lactate dehydrogenase (LDH) release, caspase-3 activity, malondialdehyde (MDA) level, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were determined by commercial kits. Cell apoptosis was measured by flow cytometry. Intracellular reactive oxygen species (ROS) generation was monitored by DCFH-DA. The miR-21 level was quantified by reverse transcription-quantitative (RT-q)PCR. The interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α levels were measured by RT-qPCR and ELISA. The results showed that salidroside pretreatment significantly increased cell viability and decreased the release of LDH, accompanied by an increase in miR-21 expression in H/R-treated H9c2 cells and a miR-21 inhibitor reversed these effects. In addition, the miR-21 inhibitor also abrogated the inhibition of salidroside on H/R-induced increases in apoptosis and caspase-3 activity in H9c2 cells. Salidroside mitigated H/R-induced oxidative stress as illustrated by the downregulation of ROS generation and MDA level and increased the activities of the antioxidant enzymes, SOD and GSH-Px, all of which were abrogated in cells transfected with the miR-21 inhibitor. Salidroside induced a decrease in the expression and levels of the pro-inflammatory cytokines, IL-6, IL-1β and TNF-α, which were prevented by the miR-21 inhibitor. Together, these results provide evidence of the beneficial effects of salidroside against myocardial I/R injury by reducing myocardial oxidative stress and inflammation which are enhanced by increasing miR-21 expression.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge