English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Nanomaterials 2020-Jan

Microwave Synthesis of Gold Nanoclusters with Garlic Extract Modifications for the Simple and Sensitive Detection of Lead Ions.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Lingaraj Ryavanaki
Hweiyan Tsai
C Fuh

Keywords

Abstract

Novel bovine serum albumin (BSA)-gold nanoclusters with garlic extract modifications (mw_G-BSA-AuNCs) were prepared through microwave-assisted rapid synthesis. The modified nanoclusters were characterized and used for the simple and sensitive detection of Pb2+ ions. Both turn-on and turn-off methods were used and compared for Pb2+ ion detection. For Pb2+ ions, the preparation time for the modified nanoclusters was 10 min, and the detection time for the nanoclusters was 6 min. The modified nanoclusters were stable, and their fluorescence intensities changed by less than 10% in 60 days. The detection limit and linear range for the "off-on" method of mw_G-BSA-AuNCs for Pb2+ ion detection were 0.28 and 1-20 nM, respectively. The recoveries of the mw_G-BSA-AuNCs probe used for the detection of the Pb(II) ion in tap water ranged from 93.8% to 102.2%, with an average of 97.1%. The "off-on" method of mw_G-BSA-AuNCs can provide a lower detection limit, higher selectivity, and better recovery than the commonly used "turn-off" methods of mw_BSA-AuNCs for Pb2+ ion detection. The proposed method is superior to other methods proposed from 2018 to 2019 because it can provide a shorter preparation time and a lower detection limit with good selectivity. The microwave-assisted novel compound, mw_G-BSA-AuNCs, can be rapidly synthesized in a green manner and can provide a low detection limit, good selectivity, and a simple and fast reaction for Pb2+ ion detection.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge