English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biomolecular Structure and Dynamics 2019-Dec

Mining of potential dipeptidyl peptidase-IV inhibitors as anti-diabetic agents using integrated in silico approaches.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Shweta Sharma
Shubham Srivastava
Apeksha Shrivastava
Ruchi Malik
Faisal Almalki
Khalid Saifullah
M Alam
M Shaqiquzzaman
Shakir Ali
Mymoona Akhter

Keywords

Abstract

The Dipeptidyl peptidase-IV (DPP-IV) family of receptors possesses a large binding cavity that imparts promiscuity for number of ligand binding which is not common to other receptors. This feature increases the challenge of using computational methods to identify DPP-IV inhibitors, therefore using both pharmacophore and structure based screening seems to be a reliable approach. Mining of novel DPP-IV inhibitors by integrating both of these in silico techniques was reported. Pharmacophore model (Model_008) obtained from structurally diverse reported compounds was used as a template for screening of MolMall database followed by structure based screening against PDB ID: 5T4E. After Absorption, Distribution, Metabolism and Excretion (ADME) analysis of shortlisted compounds, consensus docking and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) studies were carried out. The results of the docking studies obtained were comparable to that of the reference ligand. Out of nine hits identified, only one hit (ID MolMall-20062) was available which was procured through exchange program. Molecular Dynamic (MD) simulation studies of the procured hit revealed its good selectivity and stability in DPP-IV binding pocket and interactions observed with important amino acids viz., Trp629, Lys544 and Arg125. Biological testing of the compound MolMall-20062 showed promising DPP-IV inhibition activity with IC50: 6.2µM. Compound MolMall-20062 could be taken as a good lead for the development of DPP-IV inhibitors.Abbreviations: ADME: Absorption, Distribution, Metabolism and Excretion; ChEBI: Chemical Entities of Biological Interest; DPP-IV: Dipeptidyl peptidase IV; DISCOtech: Distance Comparisons; HTVS: High Throughput Virtual Screening; MD: Molecular Dynamics; MM-GBSA: Molecular Mechanics-Generalized Born Surface Area; OGTT: Oral Glucose Tolerance Test; PBVS: Pharmacophore Based Virtual Screening; PDB: Protein Data Bank; RMSD: Root Mean Square Deviation; ROC: Receiver Operating Characteristics; SP: Standard Precision; SBVS: Structure Based Virtual Screening; VS: Virtual Screening; XP: Extra Precision.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge