English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Recent Patents on Anti-Cancer Drug Discovery 2020-Jun

Modulation of MicroRNAs by Euphorbia microsciadia Boiss in MDA-MB-231: New Possibilities in Breast Cancer Therapy

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Mohammad-Reza Mahmoudian-Sani
Majid Asadi-Samani

Keywords

Abstract

Background: A large number of Euphorbia species have been evaluated for anticancer effects; however, their anticancer mechanisms have not been established up to now.

Objective: The present study aimed to evaluate the effects of Euphorbia microsciadia (E. microsciadia) Boiss on the modulation of micro (mi) RNAs in MDA-MB-231 cell line.

Methods: As the first step, inhibitory concentration of hydroalcoholic extract of E. microsciadia on MDA-MB-231 cells was examined using the MTT assay, by passing 24 and 48h from seeding. The real-time quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) was also utilized to determine Let-7, miR-15, miR-16, miR-29, miR-151, miR-155, miR-21, miR-146b, miR-181b, miR-221, miR-222, miR-21, and miR-146b expressions in MDA-MB-231 cells, by passing 24 and 48h from treating with the extract of E. microsciadia.

Results: The results reveal the cytotoxic effects of E. microsciadia on MDA-MB-231 cell line in a dose-dependent manner. The half maximal Inhibitory Concentrations (IC50) were also equal to 275 and 240μg/ml for E. microsciadia, by passing 24 and 48h from the treatment, respectively. Furthermore, it was confirmed that, E. microsciadia had augmented the expression levels of Let-7, miR-15, miR-16, miR-29, and miR-34a, which lead to an increase in apoptosis.

Conclusion: E. microsciadia could modulate some miRNAs involved in cell cycle arrest and apoptosis in MDA-MB-231 cell line. Accordingly, targeting miRNAs by E. microsciadia can open some newer avenues for breast cancer therapy.

Keywords: Apoptosis; breast cancer; cell cycle; euphorbia; miR-34a; microRNA; tumor suppressor..

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge