English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Biological Macromolecules 2020-Jul

Molecular investigation of coleopteran specific α-amylase inhibitors from Amaranthaceae members

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ashwini Rane
Varun Venkatesh
Rakesh Joshi
Ashok Giri

Keywords

Abstract

α-Amylase inhibitors (α-AIs) target α-amylases and interfere with the carbohydrate digestion of insects. Among different classes of α-AIs, a knottin-type inhibitor from Amaranthus hypochondriacus (AhAI) is found to be specific against coleopteran storage pests. In this report, we have characterized three previously unidentified knottin-type α-AIs from various Amaranthaceae plants namely, Amaranthus hypochondriacus (AhAI2), Alternanthera sessilis (AsAI) and Chenopodium quinoa (CqAI). They contain a signal peptide, pro-peptide, and mature peptide. New α-AIs mature peptides share 68 to 78% identity with the AhAI and have highly variable pro-peptide regions. Along with the cystine-knot fold, they show the conservation of reactive site residues. We have successfully expressed active recombinant α-AIs using an oxidative cytoplasmic environment. Inhibition studies against diverse amylases revealed that these inhibitors showed selective inhibition of coleopteran recombinant insect α-amylases viz., Tribolium castaneum, and Callosobruchus chinensis. Tribolium castaneum α-amylase inhibition potency was highest for AhAI2 (Ki ~ 15 μM) followed by AsAI (Ki ~ 43 μM) and CqAI (Ki ~ 61 μM). Interaction analysis of these inhibitors illustrated that the reactive site of inhibitors makes several non-covalent interactions with the substrate-binding pocket of coleopteran α-amylases. The selectivity of these inhibitors against coleopteran α-amylases highlights their potential in storage grain pest control.

Keywords: Amaranthaceae; Coleoptera; Knottin-type; α-Amylase; α-Amylase inhibitor.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge