English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Colloids and Surfaces B: Biointerfaces 2020-Apr

Nanostructured liquid crystalline particles as delivery vectors for isofuranodiene: Characterization and in-vitro anticancer activity.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Michela Pisani
Luana Quassinti
Massimo Bramucci
Rossana Galassi
Filippo Maggi
Barbara Rossi
Alessandro Damin
Patricia Carloni
Paola Astolfi

Keywords

Abstract

Isofuranodiene is an oxygenated sesquiterpene containing a furan ring isolated from the essential oil of Smyrnium olusatrum L. (Apiaceae) owning notable anticancer activity. Despite its biological potential, the high lipophilicity along with a relatively low stability due to Cope rearrangement giving rise to a less active compound, make the perspective of its therapeutical use unlikely. On this basis, in the present work we evaluated bulk and dispersed non lamellar liquid crystalline phases as effective delivery vectors for isofuranodiene, and capable of preserving its structure and enhancing the biological activity. Small-angle X-ray scattering, dynamic light scattering, and UV resonance Raman spectroscopy were used to characterize the nanosystems in an integrated experimental approach. Encapsulation of isofuranodiene in the lipid matrix resulted in a transition from a cubic Im3m to a reversed hexagonal phase because of the highly lipophilic character of the drug, as obtained in SAXS measurements, and in significant shifts in the components of the Raman spectrum of isofuranodiene. The anticancer activity of isofuranodiene-loaded lipidic nanoparticles was assessed on MDA-MB 231 cell line by MTT assay and was found to be higher than that of pristine isofuranodiene.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge