English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biomolecular Structure and Dynamics 2020-Jul

Natural derivatives with dual binding potential against SARS-CoV-2 main protease and human ACE2 possess low oral bioavailability: a brief computational analysis

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Priyanka Sharma
Asifkhan Shanavas

Keywords

Abstract

The world is witnessing severe health meltdown due to COVID-19. Generic antiviral drug remdesivir has been found to reduce time to clinical recovery but with insignificant clinical benefits and the antimalarial drug, hydroxychloroquine has been red flagged by USFDA for use as a prophylactic measure due to its cardiotoxicity. There is an acute requirement for a drug candidate that has significant clinical benefit with minimal to no side effects. With restricted access to wet laboratory techniques, an alternative approach is to engage in computational screening of lead molecules that could inhibit SARS-CoV-2 at different stages of its infectious cycle. Several in silico studies on natural derivatives, especially that present in daily refreshments (tea and fruit juices), staple food (black rice, red onions, soy beans etc) and traditional medicines (extracts of herbs, leaves and flowers) have been identified as potential drug candidates that bind efficiently with the key viral proteins. However, oral bioavailability of these nutriments is considerably low due to either poor permeability or loss of structure and function due to digestion in the gastrointestinal tract. Here we discuss few natural secondary metabolites (Delphinidin 3,5-diglucoside, Scutellarein 7-glucoside, Avicularin and 3,5-Di-O-galloylshikimic acid) that showed encouraging binding affinity against coronavirus main protease (Mpro) and human ACE2 receptor with MM-GBSA energies up to -74.0 Kcal/mol and -79.5 Kcal/mol, respectively. However, their Abbott bioavailability score (ABS) of 0.11 or 0.17 predicts poor oral bioavailability. This study could trigger interest to engineer potential natural products in managing present or future pandemics. Communicated by Ramaswamy H. Sarma.

Keywords: ACE2; COVID; Natural products; SARS-CoV-2; bioavailability.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge