English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2020-Aug

Novel ASR isolated from drought stress responsive SSH library in pearl millet confers multiple abiotic stress tolerance in PgASR3 transgenic Arabidopsis

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Rajendra Meena
Harinder Vishwakarma
Gourab Ghosh
Kishor Gaikwad
Tara Chellapilla
Madan Singh
Jasdeep Padaria

Keywords

Abstract

A genomic resource of drought stress responsive genes/ESTs was generated using Suppression Subtractive Hybridization (SSH) approach in a drought stress tolerant Pennisetum glaucum genotype 841B. Fifty five days old plants were subjected to drought stress after withholding water for different time intervals (10 days, 15 days, 20 days and 25 days). A forward subtractive cDNA library was prepared from isolated RNA of leaf tissue. Differential gene expression under drought stress was validated for selected nine contigs by RT-qPCR. A transcript homologous to Setaria italica ASR3 upregulated under drought stress was isolated from genotype 841B and characterized. Heterologous expression of PgASR3 was validated in Arabidopsis and confirmed under multiple abiotic stress conditions. A total of four independent transgenic lines overexpressing gene PgASR3 were analyzed by Southern blot at T1 stage. For drought stress tolerance, three independent lines (T2 stage) were analyzed by biochemical and physiological assays at seedling stage. The growth rate (shoot and root length) of transgenic seedlings improved as compared to WT seedling under differenct abiotic stress conditions. The three transgenic lines were also validated for drought stress tolerance and RT-qPCR analysis, at maturity stage. Under drought stress conditions, the mature transgenic lines showed higher levels of RWC, chlorophyll and proline but lower levels of MDA as compared to WT plants. PgASR3 gene isolated and validated in this study can be utilized for developing abiotic stress tolerant crops.

Keywords: Abiotic stress; Drought stress; Pennisetum glaucum; PgASR; SSH library; Transgenic arabidopsis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge