English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Frontiers in Chemistry 2020-Jun

Obtaining and Characterization of a Polydisperse System Used as a Transmembrane Carrier for Isosorbide Derivatives

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Florin Borcan
Adél Len
Diana Bordejevic
Zoltán Dudás
Mirela Tomescu
Adina Valeanu

Keywords

Abstract

Due to their effect of vasodilatation, isosorbide nitrates represent one of the most important and most used solutions for angina pectoris. Unfortunately, these compounds have multiple dose-related adverse drug reactions such as headache, weakness, mild dizziness, and occasionally heart rate changes, nausea, vomiting, and sweating. The main aims of this research were to obtain and to evaluate new polyurethane (PU) structures that can be used as a proper transmembrane carrier with an improved release kinetic. Chitosan-based PU structures were obtained by a polyaddition process between hexamethylene diisocyanate and a mixture of chitosan, butanediol, and polyethylene glycol in the presence of caffeine as a synthesis catalyst. The obtained samples (with and without isosorbide nitrates) were characterized regarding the encapsulation and release rate (UV-Vis spectra), chemical composition (FTIR), thermal stability (thermal analysis), morphology changes (SEM and SANS), and in vivo irritation tests. These methods revealed no significant differences between the two sample structures. Multipopulational structures with sizes between 73 and 310 nm, with an increased tendency to form clusters and a high resistance to heat (up to 280°C), were obtained. This study presents an alternative administration of isosorbide derivatives based on a PU carrier with a high biocompatibility and a prolonged release.

Keywords: chitosan; drug delivery; microstructural characterization; polyurethane; skin irritation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge