English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Separation Science 2020-Mar

Optimization of extraction for Anemarrhena asphodeloides Bge. using silica gel-based vortex-homogenized matrix solid-phase dispersion and rapid identification of antioxidant substances.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Tiancheng
Jia Sun
Xiangkun Li
Yukun
Lei Liu
Lina Guo
Qi Liu
Yu Sun

Keywords

Abstract

A novel and simple method was established for the extraction and determination of seven compounds in Anemarrhena asphodeloides Bge. using silica gel-based vortex-homogenized matrix solid-phase dispersion and ultra high performance liquid chromatography quadrupole-time of-flight mass spectrometer. The conditions for the extraction were optimized. Silica gel was served as the dispersant, 50% methanol-water was selected as an elution solvent and the grinding time was 3 min. Compared with the traditional ultrasonic-assisted extraction, the developed method was rapid and efficient. In order to screen potential antioxidants, extract dealing with the optimized method was applied to a polyamide chromatography column and a D-101 macroporous resin column. Fr.2.2 showed the highest antioxidant activities with the most content of flavonoid. A total of 25 peaks were identified from the active fraction. A 2,2'-diphenyl-1-picrylhydrazyl ultra high performance liquid chromatography coupled with mass spectrometry approach was adopted for the rapid and exact screening and identification of antioxidant compounds. It indicated that flavonoids exhibited potential antioxidant activities. The antioxidant activities of 9 monomeric compounds in vivo were tested. Structure-activity relationships were discussed. Five flavonoids with the concentration of 500 μg·mL-1 would reduce the oxidative stress of PC12 cells which were induced with 2,2'-azobis[2-methylpropionamidine] dihydrochloride. This article is protected by copyright. All rights reserved.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge