English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Nanomaterials 2020-Sep

Osteogenic and Anti-Inflammatory Behavior of Injectable Calcium Phosphate Loaded with Therapeutic Drugs

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ines Fasolino
Alessandra Soriente
Luigi Ambrosio
Maria Raucci

Keywords

Abstract

Bone fractures related to musculoskeletal disorders determine long-term disability in older people with a consequent significant economic burden. The recovery of pathologically impaired tissue architecture allows avoiding bone loss-derived consequences such as bone height reduction, deterioration of bone structure, inflamed bone pain, and high mortality for thighbone fractures. Actually, standard therapy for osteoporosis treatment is based on the systemic administration of biphosphonates and anti-inflammatory drugs, which entail several side effects including gastrointestinal (GI) diseases, fever, and articular pain. Hence, the demand of innovative therapeutic approaches for locally treating bone lesions has been increasing in the last few years. In this scenario, the development of injectable materials loaded with therapeutically active agents (i.e., anti-inflammatory drugs, antibiotics, and peptides mimicking growth factors) could be an effective tool to treat bone loss and inflammation related to musculoskeletal diseases, including osteoporosis and osteoarthritis. According to this challenge, here, we propose three different compositions of injectable calcium phosphates (CaP) as new carrier materials of therapeutic compounds such as bisphosphonates (i.e., alendronate), anti-inflammatory drugs (i.e., diclofenac sodium), and natural molecules (i.e., harpagoside) for the local bone disease treatment. Biological quantitative analyses were performed for screening osteoinductive and anti-inflammatory properties of injectable drug-loaded systems. Meanwhile, cell morphological features were analyzed through scanning electron microscopy and confocal investigations. The results exhibited that the three systems exerted an osteoinductive effect during later phases of osteogenesis. Simultaneously, all compositions showed an anti-inflammatory activity on inflammation in vitro models.

Keywords: bone tissue regeneration; calcium phosphates; drug loaded biomaterials; inflammation treatment; injectable biomaterials; sol-gel method and in vitro model.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge