English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plants 2020-May

Phytoremediation Potential, Photosynthetic and Antioxidant Response to Arsenic-Induced Stress of Dactylis glomerata L. Sown on Fly Ash Deposits

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Gordana Gajić
Lola Djurdjević
Olga Kostić
Snežana Jarić
Branka Stevanović
Miroslava Mitrović
Pavle Pavlović

Keywords

Abstract

Arsenic (As) from coal fly ash can be released into soil/groundwater, presenting a global threat to the environment and human health. To overcome this environmental problem, phytoremediation represents an urgent need, providing 'green' cleanup of contaminated lands. The present study focused on As concentrations in fly ash and plants, evaluation of phytoremediation potential of Dactylis glomerata sown on fly ash deposits together with its photosynthetic activity, and oxidative and antioxidative response to As stress. Field research was carried out on fly ash deposits at the thermal power plant "Nikola Tesla", Obrenovac (TENT-A, Serbia) and the control site. Fly ash is characterized by alkaline pH reactions, small amounts of organic matter, a large amount of available phosphate, and total and available As concentrations. Results in this study indicate that phosphate application can ameliorate As toxicity, uptake and root-shoot transport. Furthermore, D. glomerata can be considered as good As phytostabilizator, because it retains more As in roots than in leaves. Excess As in leaves decreases photosynthetic efficiency (Fv/Fm) and concentrations of chlorophylls, carotenoids, and anthocyanins, whereas high content of malondialdehyde (MDA) can be a signal for biosynthesis phenolics and ascorbic acid, providing cellular redox homeostasis and recovery of photosystem II (PSII) photochemistry. In the roots, low oxidative stress under high concentrations of As is related to intense antioxidant biosynthesis. Taken together, the results in this study indicate a high adaptive potential of D. glomerata to As stress. These findings may suggest that physiological and metabolic tools can be used as a way forward in the 'real field' scenario, phytomanagement of fly ash and ecosystem services providing sustainable phytoremediation of As-contaminated sites around the globe.

Keywords: Arsenic; Dactylis glomerata; adaptation; fly ash; metabolites; oxidative stress; photosynthesis; phytoremediation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge