English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Probiotics and Antimicrobial Proteins 2020-Jun

Plant Beneficial Features and Application of Paraburkholderia sp. NhPBG1 Isolated from Pitcher of Nepenthes hamblack

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Aswani Ravi
Mary Theresa
Vipina Nandayipurath
Sukanya Rajan
Nejumal Khalid
Aravindakumar Thankappanpillai
Radhakrishnan Krishnankutty

Keywords

Abstract

Pitchers are the unique structures of carnivorous plants used for the trapping of insects and other small invertebrates. The digestion of captured prey here is assisted by the bacteria, which have been associated with pitchers. These bacterial communities can therefore expect to have a variety of plant beneficial functions. In this study, the bacterial isolate NhPBG1 from the pitcher of Nepenthes hamblack was screened for activity against Pythium aphanidermatum, Rhizoctonia solani, Fusarium oxysporum, and Colletotrichum accutatum and was found to have the inhibitory activity towards all the tested phytopathogens. Interestingly, the isolate was found to have hyper-inhibitory effect against P. aphanidermatum. Further to this, the isolate was also shown to be positive for plant beneficial traits such as indole-3-acetic acid (IAA) and ammonia production, phosphate, potassium and zinc solubilization, nitrogen fixation, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. BLAST analysis of the 16S rDNA sequence of NhPBG1 has identified it as Paraburkholderia sp. Also, the Zingiber officinale rhizome pre-treated with NhPBG1 was found to get protected from P. aphanidermatum induced infection, whereas the control showed symptoms of infection. This was further confirmed by the microscopic evaluation of the presence of fungal mycelia in the tissues of control. However, the mycelial invasion could not be detected in the NhPBG1 treated rhizome. The metabolite profiling of NhPBG1 by GC-MS has identified variety of general metabolites, while the antifungal compounds pyocyanin and 1-hydroxyphenazine could be identified by the LC-MS/MS analysis.

Keywords: Biocontrol properties; Nepenthes hamblack; Paraburkholderia sp.; Plant beneficial traits; Rhizome protection; Zingiber officinale.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge