English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biological Trace Element Research 2020-Jul

Potential Ameliorative Effects of Chromium Supplementation on Glucose Metabolism, Obesity, and Genomic Stability in Prediabetic Rat Model

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Patrícia Molz
Walter Molz
Danieli Dallemole
Augusto Weber
Mirian Salvador
Daniel Prá
Silvia Franke

Keywords

Abstract

Chromium (III) (Cr(III)) effect on improving glucose, body mass loss, and genomic stability has been extensively studied in models of type 2 diabetes. However, there is a lack of studies evaluating its effect on prediabetes. Thus, this study evaluates the effects of Cr(III) as dietetic supplementation on glucose metabolism, obesity, and genomic stability on prediabetic rat model using high-invert sugar. Male Wistar rats were divided randomly into four treatment groups: (1) control, receiving standard diet (control); (2) prediabetic (PD), receiving a 32% of invert sugar; (3) Cr(III), receiving chromium (III) chloride (CrCl3•6H2O) (58.4 mg/L); and (4) Cr(III) + PD, receiving CrCl3•6H2O in combination with high-invert sugar. Cr(III) supplementation significantly reduced blood glucose (123.00 ± 8.29 mg/dL vs. 115.30 ± 9.31 mg/dL, p = 0.015) and partially reduced area under the 120-min blood glucose response curve (AUC) in PD rats (p = 0.227). Moreover, Cr(III) attenuated weight gain (187.29 ± 38.56 g vs. 167.22 ± 29.30 g, p = 0.004), significantly reducing body mass index (0.68 ± 0.04 g/cm2 vs. 0.63 ± 0.04 g/cm2, p < 0.001), Lee index (0.30 ± 0.01 vs. 0.28 ± 0.01, p < 0.001), and peritoneal fat (p < 0.001). Regarding genomic stability, high-invert sugar, Cr(III), or the combination of both did not produce changes in oxidative stress, DNA damage in pancreas, or cytotoxicity markers. These data suggest that Cr(III) supplementation improved partially glucose metabolism and reduced obesity in rat model PD due to high-invert sugar without influence in genomic stability.

Keywords: Chromium; Genomic stability; Glucose tolerance; Obesity; Prediabetes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge